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Introduction 

 

Simulating agents to collectively solve complex tasks is a long-known strength of agent-

based modeling approaches (Wilensky and Rand, 2015). Where a centralized cognition alone 

cannot achieve optimal results, individual agent cognition can excel. But even when deciding to 

rely on individual agent cognition to solve some particular task, there are many frameworks to 

choose from. Stuart Russel and Peter Norvig detail the four types of agent cognition: reflexive, 

utility-based, goal-based, and adaptive (learning) (Russel and Norvig, 1995). Adaptive cognition 

can be reflected upon on the agent-population level, where “fitness”  is increased incrementally 

over time through evolution given some selection pressure. In evolution by natural selection, 

chance mutations in genes affect the fitness of an individual, which in turn give that individual’s 

genes a higher chance to propagate throughout the environment (Darwin, 1859). Computer 

scientists have long sought to replicate evolutionary mechanisms in software, giving us 

metaheuristics such as genetic algorithms (Koza, 1992) and complex decision makers in the form 

of neural networks optimized through neuroevolutionary techniques (Edmund and March, 1994). 

In previous works, researchers have taken advantage of adaptive agent cognition in the 

form of neuroevolution to complete complex tasks not easily solved through some central agent 

planner or rule-based agent heuristic. (Dynamic environments are usually an indicator towards 

the usefulness of adaptive cognition.) Regarding physical environments, roboticists have 

leveraged neuroevolution to search the cognition space of robot swarms (Stonedahl, 2017), and  

through using agent-based modeling software, computer scientists have experimented with 

mutating neural network weights to increase agent fitness in classic population dynamics models 

(Head et al., 2015). Especially regarding population dynamics, agent-based models determine 



agent actions on some type of random behavior, such as choosing a random or pseudo-random 

direction to move in. This type of agent cognition ”can be brittle in the context of the 

unpredictable and emergent situations in which agents may find themselves” (Head and 

Wilensky, 2018). There is therefore a need to investigate flexible agent cognition at the structural 

level. 

 In this paper, I present a simple analysis of using and scaling single- and multi-layer 

neural networks as adaptive cognition for competitive, reward-driven agents. There is, to my 

knowledge, a lack of literature that probes the effectiveness of different sizes of small neural 

networks as simple agent cognition, and the limits of expressiveness of these networks in terms 

of fitness outcomes given a simple competitive environment. 

 

 

 

 

 

 

 

 

 

 



The General Model 

 

             Figure 1: Layout of the model. 

 

Environment, Patches, and Turtles 

 The spatial environment is modeled by three types of patches: sea (blues patches), food 

(green patches), and hazards (red patches). Sea patches are the background of the model and 

have no functional purpose other than to cosmetically represent water, while green patches are 

representations of ‘food’ to be competed after by the turtle agents. Hazard patches are patches 

that should be avoided by the turtle agents as they result in instant energy loss when encountered. 

Food is randomly placed in the environment every tick until the food-level food patches are 

present. Food patches have their own patch-birth-tick variable, denoting the tick they were 

spawned in at. 

Turtle agents have a large number of variables associated with each. The fitness variable 

is the mean of the eat-times variable, which is the last fitness-plot-interval time intervals the 

agent has gone without eating. Weights stores the agent’s personal neural network weights. 

Energy is the current energy the agent has. Turtle-birth-tick denotes the tick the agent was 



hatched at. Each turtle also has a set of 8 perception variables: ahead, ahead-left, ahead-right, 

left-side, right-side, behind-left, behind-right, and behind. These hold the distance of the agent 

from food and hazards (hazards are represented as negative distance) in each respective 

perceptive region. 

 

Model Rules 

The general go loop is as follows: Agents die if they are exhausted or too old. They eat if 

they come across a food patch. They reproduce (hatch an identical agent that has a chance to 

mutate their network weights) once their energy exceeds 100. They perceive their immediate 

surroundings and move based on their perception inputs. The environment is regulated (the 

amount of food and hazards in the environment is kept at the food-level value and the hazard-

level value respectively), and turtle fitness is plotted. Detailed model rules are present in the 

appendix. 

 This loop, at a high level, resembles the generational loop of agents in evolution by 

natural selection, excluding any explicit predatory aspects (agents preying on other agents or 

parasitic relationships). Agents must compete to stay alive, which happens to coincide with 

spreading of genes similar to its own, since staying alive means eating before other agents can, 

and eating means the agent will reproduce agents more or less similar to them. Having this 

structure should facilitate progress towards high fitness from the point of view of the population 

as a whole, which is what I want to investigate with respect to network capacities and 

environment complexity. 

 



Adaptive Agent Cognition: Neural Network Brains 

 The type of adaptive agent cognition chosen to investigate is in the form of four 

structurally different feed-forward neural networks (perceptrons). All network architectures 

output three possible actions: turn left 20 degrees, turn right 20 degrees, or do nothing. Two 

networks, a single-layer and a multi-layer (two-layer), take the first 3 perception inputs (ahead, 

ahead-left, ahead-right), while the other two (again a single- and multi-layer network) take all 8 

perception inputs. 

 

 

 

 

 

 

      Figure 2: The four network architectures. 

 



Perception inputs are cones of vision-distance radius and vision-angle angle from the 

center of the agent. The ahead perception looks toward 0 degrees given the agents center, and 

perception intervals are in increments of 45 degrees. So, the ahead-left cone looks towards -45 

degrees, ahead-right looks towards 45 degrees, left-side looks towards -90 degrees, etc.  

 

     Figure 3: Front-facing vision (3 inputs) (left) and total vision (8 inputs) (right). 

 

The included network.py file contains the network class and helper functions. There are 

two classes, one for a single-layer network and one for a network that contains a hidden layer. 

Bias is removed and gaussian initialization ( N(0, 2.5) ) is used for all network layers. For the 

multi-layer, a Tanh nonlinearity is applied to the first layer, and for both networks the SoftMax 

function is applied to the output tensor.  

All networks share the following two helper functions: The mutate function takes a 

network copy and alters each weight with mutation-rate chance according to the normal 

distribution: N(0, 5). The get-action function takes the weights agent variable and gives it as 

input to the agent’s personal neural network cognition, returning a probability distribution over 



which of the three possible actions the agent should take. In the NetLogo code, the maximum 

value from this distribution is taken as the action for the agent to take. 

Agent cognition in this format is implemented into NetLogo through the py extension, as 

PyTorch is used as the standard library for implementing the neural networks. 

 

Evaluation 

 

The Fitness Metric 

 To evaluate agent performance, a fitness metric is compiled from agent interactions with 

the environment. The first component is the recent (the previous fitness-plot-interval times) 

average time turtles have gone without eating, or the fitness-error. The second and third 

components are the average uptime of food and hazard patches, respectively. Using the average 

time turtles have gone without eating is a good representation of how good turtles are at pathing 

towards food patches but may not necessarily be totally indicative of fitness as turtles will have 

to path around hazards as they are spawned into the world. Therefore, the average amount of 

time individual food and hazard patches have existed in the environment is considered as well. 

This last variation of the fitness formula is scaled by how many turtles there are in the world, as 

fitness could potentially be biased towards higher population counts with the current 

formulation.  

The final metric can be computed as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑊𝐴(𝐻𝑈) − 5 ∗ 𝑊𝐴(𝐹𝑈) − 𝑊𝐴(𝐹𝐸)

√𝑇
 



Where WA, a weighted average function, takes the input x as a list: 

𝑊𝐴(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 ∗ 0.9 + 𝑚𝑒𝑎𝑛 𝑥 ∗ 0.1 

And where: 

𝐻𝑈 = 𝐻𝑎𝑧𝑎𝑟𝑑 𝑢𝑝𝑡𝑖𝑚𝑒𝑠;  𝐹𝑈 = 𝐹𝑜𝑜𝑑 𝑢𝑝𝑡𝑖𝑚𝑒𝑠;   𝐹𝐸 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟;   𝑇 = 𝑇𝑢𝑟𝑡𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 

 

Experiments and Results 

 To compare the four different adaptive cognition structures, a series of simulations were 

run. For each network structure, 20 simulation runs were recorded, which amounted to 80 runs in 

total. To test the fitness of agents to changes in the environment and increasing selection 

pressures over time, the food-level and hazard-level parameter were altered over time. Food-level 

was set to decay from 100 to 20, and hazard-level to increase from 0 to 20 over 100,000 ticks. 

The mutation-rate was set to 5 for the 8-input multi-layer network, and 10 for all others. Other 

parameters are set as follows: 

 

 

Simulations are run with the NetLogo BehaviorSpace software, which allows measuring 

of custom metrics over a wide parameter space (Wilensky, 1999). Results of the experiments are 

gathered and plotted: 

  

start-agents initial-energy-loss move-interval vision-angle vision-distance age-limit 

20 0.01 1 120 6 2500 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Fitness and survival values plotted for over 20 runs per each network. 



 

Analysis and Discussion 

 

Interpretation of results 

 The “Max Fitness” graph plots the max fitness achieved per network at any time over the 

20 runs, while the “Average Max Fitness” graph takes the mean of the maximum fitness value 

per network in every one of the 20 runs. The “Highest Average Fitness” graph takes the highest 

average fitness per network out of the 20 runs, and “Average Survival Time” records the average 

time turtles stay alive per network over the 20 runs. 

Focusing on peak fitness values, single-layer networks are able to generally become very 

optimized for fitness at some time in the environment, as fitness values up to 2705.77 are 

reached with the 8-input perceptron. The same trends are seen when considering the averages of 

multiple maximums (where a maximum is the highest fitness value in a run). But when we look 

past the peak fitness values at any given time, and instead look at the average fitness over entire 

runs, a trend arises where more complex networks tend to do worse, except for the most complex 

network puzzlingly. 

Combining this information with the average survival time graph, however, gives a 

clearer picture as to the competency of each particular network in different areas of expertise. 

More complex networks eventually find better ways to navigate the environment as selection 

pressures mount but perform worse on the given “fitness” metric, as the metric favors easier 

environment spaces. Shifting the focus to less complex networks, these preform much worse in 

terms of adapting to changes in the environment, but much more easily take advantage of easier 

environments than the more complex networks. 



This is to say that, at least in this particular competitive paradigm, there is a tradeoff 

between short-term learning speed and long-term population stability. If placed in the same 

environment, the agents with the simplest cognition would out-compete the agents with more 

sophisticated cognitive structure but would not have the network capacity to survive harsher 

environments where, paradoxically, the more complex agents would. 

 

Emergent Behavior 

Emergent behavior is observed in certain circumstances. Given agent genes (network 

weights) become homogenous enough, agents can seem to be following “leaders” or creating 

pathways that other agents follow even though they actually have no perception of other agents 

at all. 

        

      Figure 4: Turtle agents “following” each other (pictured at bottom). 

 



Through evolution of population weights distribution over time, emergent behavior is 

most evident in the strategies turtles exhibit when obtaining food while avoiding hazards. Agents 

with multi-layer networks often times adapt behaviors of turning intricately when hazards are 

plentiful, and agents with total (8-input) perception exhibit behavior of backtracking for food in 

the same area multiple times. These behaviors, if observed in a vacuum without prior knowledge 

of agent rules, can easily be rationalized by assuming that turtles almost have a “human” 

movement to them, when in-fact these behaviors are emergent from population drift given a very 

simple adaptive cognition. 

 

 

Conclusions 

 

 

In this paper I’ve attempted to answer some pressing questions about very simple 

adaptive cognition in the context of evolving agent populations. The concept of brittle cognition 

that has a high short-term adaption speed contrasted with a cognitive structure robust to complex 

environment change should be an important note for those trying to harness the power of 

adaptive agent cognition. This is to stress that tradeoffs between agents that can “get off the 

ground fast” and agents that are “future-proof” present a barrier to successful adaptive cognition 

that can be cleared given one is adequately equipped with knowledge of the suitable cognitive 

structure to implement. 

For example, future work would entail not only a neuroevolution of network weights, but 

a structural neuroevolution where the cognition structure itself can be adaptive. Given that the 

bane of learning/adapting is immutable frameworks and given the static nature of the neural 



network structures used here, the next steps may be to allow the learning process to take 

advantage of mutating network capacity also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

[1] Wilensky, U., Rand, W. An Introduction to Agent-Based Modeling: Modeling Natural, 

Social, and Engineered Complex Systems with NetLogo. MIT Press (2015) 

[2] Russell, Stuart J., Peter Norvig, and Ernest Davis. Artificial Intelligence: A Modern 

Approach. 1st ed. Upper Saddle River, NJ: Prentice Hall. (1995) 

[3] Darwin, Charles, 1809-1882. On the Origin of Species by Means of Natural Selection, or 

Preservation of Favoured Races in the Struggle for Life. London :John Murray. (1859) 

[4] J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural 

Selection. MIT Press, Cambridge, MA, USA, (1992) 

[5] Ronald, Edmund, Schoenauer, March. "Genetic Lander: An experiment in accurate neuro-

genetic control", Parallel Programming Solving from Nature, pp. 452–461. (1994) 

[6] Stonedahl, Forrest & Stonedahl, Susa & Cheboi, Nelly & Tazyeen, Danya & Devore, David. 

Novelty and Objective-based Neuroevolution of a Physical Robot Swarm. 382-389. (2017) 

[7] B. Head, A. Hjorth, C. Brady and U. Wilensky, "Evolving agent cognition with Netlogo 

LevelSpace," 2015 Winter Simulation Conference (WSC), pp. 3122-3123 (2015) 

[8] Head, B. and Wilensky, U. Agent Cognition Through Micro-simulations: Adaptive and 

Tunable Intelligence with NetLogo LevelSpace: Proceedings of the Ninth International 

Conference on Complex Systems, pages 71-81. (2018) 

[9] Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected  

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 

https://www.bibsonomy.org/person/1e8307fb6cf4ee27405142256d98c4c9e/author/0

