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Introduction 

This project attempts to explore the correlations between different data augmentation 

techniques on cancer classification and the combinations of different augmentation approaches 

and their impact on model accuracy. The thought behind these experiments is building a robust 

model through 1) training set augmentations that I think would help the model generalize better, 

2) combining them in a helpful fashion that makes our model resistant to domain changes, then 

3) trying to emulate some of the ideas in class related to dropout through augmentations instead 

of through model structure. 

 

Methods 

Experiment 1: Individual Data Augmentations 

 For the first section of the experiments, 10 data augmentation techniques are selected: 2 

being orientation techniques (horizontal flipping and rotation), 4 being color-change techniques 

(hue, saturation, contrast, and gamma changes), 2 being noise-related techniques (sharpness and 

blurring), and 1 being a structure transformation technique (shearing) [1]. An individual training 

rotation of each of these techniques is preformed: for a subsampled dataset, a model is trained on 

the augmented version of the data for each of the 10 augmentations selected. 

Arguments/parameters per augmentation are given in Figure 2 and Figure 3. Going forward, the 

TensorFlow.Image library [2], the Tensorflow_Addons library [3], and the 



Tensorflow.Keras.Preprocessing.Image library [4] are used to produce augmentations. And the 

Matplotlib library [5] is used to produce training/accuracy graphs. 

A subsampled dataset is gathered by randomly selecting 450 images from each class from 

the extracted 90x90 pixel cells of the ROI images provided [6], totaling 1350 images in total. For 

each augmentation selected, an individual model is trained on the same subset of 450 images 

referenced above. The training and validation accuracy history for each model over 30 epochs is 

used as a reference for an augmentation’s performance. The AUROC score is used as the 

accuracy metric [7]. Maximum validation accuracy history per model is averaged over two runs 

to account for variability due to a small training set size. The same experiment is performed with 

a larger subset of training points of 900 images per class, totaling 2700 images in total. After the 

results from this first experiment are gathered (see Figure 2 and Figure 3), the augmentations 

are categorized on how well they performed in both the 1350 image and 2700 image runs. 

Augmentations are categorized into the ‘safe’ category if they perform better than non-

augmentation in maximum validation accuracy in both runs, the ‘watchlist’ category if they 

perform better than maximum validation accuracy in at least one of the two runs, and the 

‘dangerous’ category otherwise. 

 

Experiment 2: Creating Augmentation Pipelines 

Augmentations categorized into the safe category are combined into a pipeline called the 

‘safe approach’. When a model is trained with this augmentation function, all augmentations in 

the safe category are performed on all training images. This safe approach is compared with a 

non-augmented approach and other ‘watchlist approaches’ which are the fusion of the safe 

approach with some augmentation from the watchlist category added in. Too prevent 



augmentations from drowning out real examples, the augmentation pipeline is weighted by 

which augmentations perform best. Safe operations are always preformed, but watchlist 

operations have a 25 percent chance each of not being performed. This experiment is the same 

logistically to Experiment 1 in regard to how data is selected, the number of epochs, and what 

metrics are collected. The approach that performed the best in maximum validation accuracy 

times the number of augmentations (see discussion and Figure 5) was selected as the best 

approach moving forward. 

 

Experiment 3: Using Augmentations to Simulate Dropout; Final Model Training 

 After the final data augmentation approach was selected, a data removal add-on approach 

is formulated, introducing random cutout techniques [8]. Specifically, this final augmentation is 

applied after the augmentations of the selected pipeline. This technique is performed by 

randomly erasing blocks of certain dimensions from an image, given the pipeline established in 

Experiment 2. Instead of giving this augmentation its own individual experiment, two final 

models (models that are trained on the entire training set given the augmentation pipeline chosen 

by Experiment 2) are trained. One of these models has the random cutout augmentation 

appended to the end of its respective augmentation pipeline, while the other’s pipeline is 

unchanged from that chosen in Experiment 2. The final weights for the model are obtained by 

training on the full training set of 26,698 images extracted from ROI images (minus any images 

with ‘unknown’ classification and images placed in the validation set). Keras callbacks are used 

to obtain the weights with best validation accuracy over a period of 20 epochs. 

 



Discussion and Results 

 The main intent of these experiments was to give an idea of what augmentations can help 

our medical classification models extrapolate to the world outside of testing data, while also 

obtaining good results on testing metrics. The first thought is to identify a variety of the most 

common data augmentation strategies and compare them individually in the domain of cancer 

classification. Figure 1 gives a detailed look at examples of the augmentations selected on a 

subset of training images. The individual augmentation parameters are chosen in a way that 

follows a paradigm of only slight modification to the original image because 1) I wanted to keep 

relevant information that was encoded in the original image and 2) augmentations will be 

combined in the future and I didn’t want alterations to accumulate to a level where we lose 

relevant information from the original image. 

In my experiments I only train on a subset of the training data for two reasons. First, by 

taking only a subset of the training data, we can artificially increase the impact of data 

augmentations on model accuracy, allowing us to visualize which augmentations perform better. 

And second, a smaller training set makes training faster. Figure 2 and Figure 3 demonstrate the 

average validation accuracy and maximum validation accuracy along with the arguments used 

for each augmentation for the subsampled 1350 image set and 2700 image set respectively. 

Augmentations are categorized into the ‘safe’, ‘watchlist’, and ‘dangerous’ bins as described 

at the end of Experiment 1, depending on performance achieved. Figure 4 shows which 

augmentations belong to each category after experiment completion. This visualization gives 

some insight into what types of augmentations help performance. Orientation approaches like 

rotations and mirror flips have great performance, which makes sense because we are giving our 

model “new” data with no structural changes. For instance, stroma should be classified as stroma 



regardless of whether the image is rotated 180 degrees or not. The same may not necessarily be 

true for changing the color properties or using a translation technique on a stroma image. The 

noise-related techniques also end up being assigned to the safe category, which I interpreted to 

be because some of the lower-level features in the image are less relevant compared to the 

higher-level features, which is the main identifier for different classifications. For instance, 

blurring obfuscates finer details whereas the general edges of larger bodies are conserved. 

Gamma seems to be a dangerous operation when applied to these images. The reason for this 

isn’t clear but it may say something about how relevant luminance is in classification in this 

domain in a way that directly changing brightness is not. I was very surprised to see shearing 

categorized into the watchlist, as it was my intuition that slight translation techniques would 

preserve important images features while giving our model “new” data, but more 

experimentation on this method, along with the other watchlist methods, is discussed in the next 

experiment. 

The combination approach in Experiment 2 assumes that the combination of all ‘safe’ 

augmentations yield a more robust and accurate classifier than any individual approach. There 

are two reasons for this assumption: 1) for the brevity of experimentation, as there are far too 

many combinations of all techniques considered, and 2) it seems to be a benign assumption, as 

the ‘safe’ techniques seem to retain relevant information when applied in unison. This 

assumption aside, the main focus of this experiment is on the combination of ‘watchlist’ 

categorized augmentations and seeing how alterations in the middle of the spectrum of 

effectiveness change the success of our model. Figure 5 demonstrates the average validation 

accuracy and maximum validation accuracy along with the arguments used for each combination 

approach. Contrast tended to perform the best out of all the techniques, consistently ending up in 



the top maximum validation accuracy. In the end, the contrast + brightness approach faired just 

as well in maximum validation accuracy as contrast + brightness + shearing, so the latter is used 

as it statistically performs the same even with one extra augmentation. Figure 6 demonstrates the 

augmented images resulting from the combination pipelines. The intuition behind combinations 

of augmentations is the hope that we are left with a robust model at the end of training, similar to 

the intuition behind style transfer on medical images [9]. 

Dropout is a well-known regularization technique in areas of deep learning used to prevent 

overfitting. Usually this is achieved by randomly omitting particular neurons from updating their 

gradients during training. Dropout has been shown to prevent neural network units from co-

adapting, leading to major improvements in model performance [10] [11]. Since changing the 

model structure in this way is outside the scope of this project, I wanted to find a way to 

“emulate” this technique through augmentation. Random erasing is the process of replacing 

some area of pixels in an image with some constant value [8]. The intuition is, if we can remove 

sections of the image that would otherwise be a clear indication of a certain classification, we 

can force the model to learn new features that become relevant in the absence of removed 

features. Figure 7 demonstrates the random erasing technique on vanilla images. 

We experiment on random erasing efficacy in the setting of two final models for two reasons. 

The first is the intuition that given more data, random erasing will have a greater ability to 

perform as an ad-hoc dropout substitute. For example, a small experimental training set could, by 

chance, have an overrepresentation of samples that are immune to the effects of random erasing 

(i.e., images with many instances of features that tip off the model towards the correct 

classification, without considering other features that may be indicative of the same 

classification). The last reason is simply due to the fact that we are close to the end of 



experimentation in any case and judging the performance of two final models as opposed to one 

is hardly an inconvenience considering the benefit of results that are clear and do not need to be 

speculated on or extrapolated. Figure 8 details the accuracy values of the final model. The 

random erase variant prevails with a maximum validation accuracy of 0.5% higher than the 

model without this augmentation applied. Figure 9 demonstrates the images generated by the 

final image pipeline (that is, with random erasing). 

Our final model is tested on a final test set of 2510 images (2902 images minus 392 labeled 

as ‘unknown’) without augmentation and achieves a surprising test accuracy of 86.5% on the 

AUROC metric (there is a puzzling discrepancy between test and previous validation accuracy 

scores, this is considered and explained below). For experimental purposes, the other final model 

(trained on images without random erasing) is tested in the same manner and achieves a test 

accuracy of 84.74% on the AUROC metric. Figure 10 showcases the final testing results for 

both models. 

The goal of these experiments was to investigate what augmentations are beneficial to 

constructing a robust model in the domain of cancer classification. The results gathered by these 

experiments suggest that combinations of relevant augmentations, that may lead to a set of 

training images that tend toward “irrelevant” augmentations, can result in a robust model that 

still achieves relatively high accuracy. They also suggest that the counter-intuitive augmentation 

of information removal is an effective technique for increasing model performance. This being 

said, a logistic error was discovered toward the end of experimentation, where validation images 

were augmented as well. This led to validation scores suffering due to augmentations being 

applied to validation set images during the validation stages. In theory this shouldn’t have major 

impact on picking the best augmentations (the validation accuracy instead reflects model 



performance on altered images instead of unaltered ones, where altered images still retain 

relevant information for the classifier to work with), but given more time, these experiments 

should be replicated without this mishap. In hindsight, a larger subsampled set should have been 

used for experimentation, as by the end of this project I realized a 1350 image training set leads 

to variability in results and using a larger set of data for experimentation would have led to more 

reliable and concrete insights. Another possible limitation of my particular approach may be the 

assumption made in combining augmentations, and further work could be done on finding the 

best combination of many approaches, where one can rank them more effectively in this 

particular training domain. Furthermore, it is hard to quantify how robust the final model is given 

the data, which is a key question. Given more experience, some of which I have gained through 

this project, and more time, a more thorough approach could be pursued to definitively answer 

this question, along with the other concerns mentioned, moving forward. 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

Figure 1: Examples of individual augmentations (applied to ROI images for demonstration purposes) 
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Source: Experiment 1 

 

 

 

 

 

 

 

 



Figure 2: Individual image augmentation results (450 images per class; averaged over 2 runs; 30 epochs; 

sorted descending by maximum AUROC) 

Augmentation Arguments/Parameters Average 
Validation AUC 

Max 
Validation 

AUC 

Random Brightness Scale Factor Interval = (0 to 0.4) 0.7102 0.824 

Random Horizontal Flip None 0.712 0.819 

Random Sharpness Scale Factor Interval = (0 to 5) 0.717 0.815 

Random Saturation Scale Factor Interval = (0.75 to 

1.5) 

0.696 0.807 

Random Hue Scale Factor Interval = (0 to 0.06) 0.703 0.8 

Random Blurring Kernel Size Interval = (1 or 3 or 5 

or 7)    Sigma Size Interval =  (1 to 

2)         

0.712 0.793 

Random Double-Axis Shear Shear Factor Interval = (-0.25 to 

0.25)               Fill Value = (0, 0, 0) 

0.662 0.789 

Random 360˚ Rotation Degree = 360                          

Interpolation = Bilinear                                  

Fill Mode = Constant                               

Fill Value = (0, 0, 0) 

0.678 0.785 

None (Original Image) None 0.671 0.784 

Random Contrast Contrast Factor Interval = (0.75 

to 1.5) 

0.68 0.772 

Random Gamma Gamma Scale Factor Interval = (0 
to 0.5) 
Gain Scale Factor Interval = (0 to 
0.5) 

                 0.57               0.635 

Source: Experiment 1 

 

 

 

 



Figure 3: Individual image augmentation results (900 images per class; 30 epochs; sorted descending by 

maximum AUROC) 

Augmentation Arguments/Parameters Average 
Validation AUC 

Max 
Validation 

AUC 

Random Hue Scale Factor Interval = (0 to 0.06) 0.761 0.838 

Random Sharpness Scale Factor Interval = (0 to 5) 0.741 0.824 

Random Blurring Kernel Size Interval = (1 or 3 or 5 

or 7) Sigma Size Interval =  (1 to 

2) 

0.721 0.817 

Random Horizontal Flip None 0.736 0.814 

Random 360˚ Rotation Degree = 360                          

Interpolation = Bilinear                                  

Fill Mode = Constant                               

Fill Value = (0, 0, 0) 

0.74 0.81 

Random Saturation Scale Factor Interval = (0.75 to 

1.5) 

0.715 0.802 

None (Original Image) None 0.74 0.802 

Random Double-Axis Shear Shear Factor Interval = (-0.25 to 

0.25)               Fill Value = (0, 0, 0) 

0.73 0.794 

Random Brightness Scale Factor Interval = (0 to 0.4) 0.718 0.793 

Random Contrast Contrast Factor Interval = (0.75 

to 1.5) 

0.73 0.789 

Random Gamma Gamma Scale Factor Interval = (0 
to 0.5) 
Gain Scale Factor Interval = (0 to 
0.5) 

     0.5605      0.69 

Source: Experiment 1 

 

 

 

 

 



Figure 4: Augmentation techniques categorized based on performance in Experiment 1 (where Safe is 

beneficial, Watchlist requires more experimentation, and Dangerous is removed from experimentation) 

Augmentation Category 

None (Original Image) N/A 

Random 360˚ Rotation Safe 

Random Blurring Safe 

Random Brightness Watchlist 

Random Contrast Watchlist 

Random Double-Axis Shear Watchlist 

Random Gamma Dangerous 

Random Horizontal Flip Safe 

Random Hue Safe 

Random Saturation Safe 

Random Sharpness Safe 

Source: Experiment 1 

 

 

 

 

 

 

 

 

 



Figure 5: Accuracy results for combinations of augmentations (900 images per class; sorted by maximum 

AUROC) 

Note: There was a small confusion on my part, where validation data was augmented along with training data, causing many 

figures, like Figure 5, to read as if non-augmentation is superior, this is mentioned in the limitations of the experiments in the 

discussion. But overall, this should not affect the main point of the experiments. 

Augmentation  
Approach 

Average Validation AUC Max Validation AUC 

Original 0.739 0.819 

Safe 0.733 0.786 

Safe + Contrast + Brightness 0.695 0.776 

Safe + Shear + Contrast + Brightness 0.68 0.776 

Safe + Shear + Contrast 0.679 0.772 

Safe + Brightness 0.721 0.762 

Safe + Contrast 0.695 0.761 

Safe + Shear 0.696 0.76 

Safe + Shear + Brightness 0.676 0.73 

Source: Experiment 2 
 

 

 

 

 

 

 

 

 

 



Figure 6: Combinations of augmentations example images (applied to ROI images for demonstration 

purposes) 
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Source: Experiment 2 

 

 

 

Figure 7: Random Cutout/Erasing Augmentation Examples (applied to ROI images for demonstration 

purposes) 
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Source: Experiment 3 



Figure 8: Final model results comparison (Full training dataset used; sorted descending by maximum 

AUROC) 

Augmentation 
Approach 

Training Figure Average 
Validatio

n AUC 

Max 
Validatio

n AUC 

Random Erasing 
Applied 

 

0.7459 0.7766 

Without Random 
Erasing 

 

0.7498 0.7717 

Source: Experiment 3 

 

 

 

 

 



              Figure 9: Final augmentation pipeline examples (90x90 extracted cell images used) 
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Source: Experiment 3 

 
 
 

Figure 10: Evaluation of final model with random erasing (top) and final model without random erasing 

(bottom) on the test set with a batch size of 48. 

Note that accuracy scores here are much higher due to the metrics coming from a model that is being evaluated on non-

augmented data. See limitations of the experiment for more details. 

 

 

Source: Final Testing 
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